

Effective from Session: 2023-24									
Course Code	B100301T/ BS207	Title of the Course	Molecular Biology	L	т	Р	с		
Year	П	Semester	III	4	2	0	4		
Pre-Requisite	10+2 Biology	Co-requisite							
Course Objectives		e objective of this course is to enable students to understand the concept of different types of genes, DNA replication, anscription, Translation, regulation of Gene expression in prokaryotes and eukaryotes.							

	Course Outcomes
CO1	The students will be able to evaluate genome organization and synthesize functional models for its biological significance.
CO2	The students will be able to analyse the mechanisms of DNA replication in prokaryotes and eukaryotes, and propose strategies for its regulation
CO3	The students will be able to critically evaluate different types of DNA damages and Repair systems and formulate approaches to prevent/combat DNA damage.
CO4	The students will be able to critically evaluate translation mechanisms in prokaryotes and eukaryotes and propose approaches for their regulation.
CO5	The students will be able to Integrate knowledge of DNA sequence classes, post-transcriptional and post-translational modifications, and construct strategies for regulating gene expression.

1Basic Concepts of genome and its organizationImportance of Molecular Biology, Nucleic acid as the genetic material, Central Dogma of Molecular Biology, Model organisms for studying Molecular Biology, Genome and its organization in prokaryotes and Eukaryotes: Gene, Genome, Exon, Intron, regulatory sequence, Nucleosome structure and packaging of DNA into higher order structures.2DNA ReplicationSemiconservative mode of replication. Mechanism of Replication in prokaryotes and eukaryotes. Enzymes and proteins involved in replication, Theta model and Rolling circle model, Inhibitors of Replication.3DNA Damage, Repair and MutationCauses and types of DNA damage, Mechanism of DNA repair, Molecular basis and types of mutation. Ames test.4TranscriptionTranscription process in prokaryotes and eukaryotes. Enzymes, promoter, and transcription factors. Inhibitors of transcription Actinomycin D and α- Amanitin.5TranslationComponents of Protein synthesis machinery: Messenger RNA, tRNA structure and function, Charging of tRNA, aminoacyl tRNA synthetases, ribosome structure and assembly, Mechanism of protein synthesis in prokaryotes and Eukaryotes.	Contact Hrs.	Mapped CO
2DNA ReplicationEnzymes and proteins involved in replication, Theta model and Rolling circle model, Inhibitors of Replication.3DNA Damage, Repair and MutationCauses and types of DNA damage, Mechanism of DNA repair, Molecular basis and types of mutation. Ames test.4TranscriptionTranscription process in prokaryotes and eukaryotes. Enzymes, promoter, and transcription factors. Inhibitors of transcription Actinomycin D and α- Amanitin.5TranslationComponents of Protein synthesis machinery: Messenger RNA, tRNA structure and function, Charging of tRNA, aminoacyl tRNA synthetases, ribosome structure and assembly, Mechanism of protein synthesis	8	C01
3DNA Damage, Repair and MutationAmes test.4TranscriptionTranscription process in prokaryotes and eukaryotes. Enzymes, promoter, and transcription factors. Inhibitors of transcription Actinomycin D and α- Amanitin.5TranslationComponents of Protein synthesis machinery: Messenger RNA, tRNA structure and function, Charging of tRNA, aminoacyl tRNA synthetases, ribosome structure and assembly, Mechanism of protein synthesis	8	CO2
4 Transcription Inhibitors of transcription Actinomycin D and α- Amanitin. 5 Translation Components of Protein synthesis machinery: Messenger RNA, tRNA structure and function, Charging of tRNA, aminoacyl tRNA synthetases, ribosome structure and assembly, Mechanism of protein synthesis	6	CO3
5 Translation tRNA, aminoacyl tRNA synthetases, ribosome structure and assembly, Mechanism of protein synthesis	8	CO4
	8	CO4
Post-Transcription and Post-Translation ModificationsPost-transcriptional modifications of eukaryotic mRNA (capping, polyadenylation and splicing, post- translational modifications of proteins.	8	CO5
7 Gene expression Principles of gene regulation, negative and positive regulation, concept of operons, Regulation of gene expression in prokaryotes and eukaryotes; Lac operon and Trp operon concept	8	CO5
8 Classes of DNA sequences Satellite DNA, Split genes, Pseudogenes, Transposable elements, Retroelements, LINEs, SINEs.	6	CO5
Reference Books:		
1. Lewin B. (2000). Genes VII. Oxford University press.		
2. Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AM. (1987). Molecular biology of the gene.		

3. Lodish H, Baltimore D, Berk A, Zipursky SL, Darnell J. (1995). Molecular cell biology.

4. Brown, TA Genomes (2020).

1. Lewin B. (2000). Genes VII. Oxford University press.

e-Learning Source:

https://www.coursera.org/learn/dna-decoded#modules

https://www.udemy.com/course/dna-repair-concepts/?srsltid=AfmBOoq-Pm_T0Ly302rWBdh4jKd0TbeHoV_kEfvHIzFilfa6u_aUUZP_

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO	101	102	105	104	105	100	107	1301	1302	1303	1304
CO1	3	1					2	3	2	1	
CO2	3	1					2	3	2	2	
CO3	3	1	2		1	1	2	3	2	3	
CO4	3	1					2	3	2	3	
CO5	3	1					2	3	2	3	
				rolation: 7	Modorat	o Corrolati	on 2 Sub	stantial Correla	tion		

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2025-26										
Course Code	B100305V/BS247	Title of the Course	Molecular Diagnostics	L	Т	Р	С			
Year	II	Semester	III	3	0	0	3			
Pre-Requisite	10+2	Co-requisite								
Course Objectives	,	e objective of this course is to develop an understanding of the basic principles and application of molecular chniques employed in the diagnosis of diseases.								

	Course Outcomes
CO1	The student will be able to evaluate the mechanisms of the human genome and critique their association with the pathogenesis of
	common diseases using evidence-based analysis.
CO2	The student will be able to critically evaluate types of infectious diseases (bacterial, viral, fungal, protozoan, helminthic), their
	transmission modes, and propose diagnostic strategies.
CO3	The student will be able to critically evaluate genetic disorders and propose techniques for their diagnosis.
CO4	The student will be able to evaluate different types of cancers and their genetic underpinnings, and analyse the applications of molecular
	diagnostics in human cancer detection and treatment.
CO5	The student will be able to critically evaluate molecular diagnostic tools and propose their applications in clinical diagnostics and
	research.

Unit No.	Title of the Ur	nit C	Content of Unit							Contact Hrs.	Mapped CO
1	Introduction t Human Genoi Common Dise	me & r eases in v	Introduction and mechanism related to the human genome, such as gene expression, replication, and genome maintenance. Consequences of mutations and polymorphisms, and impacts of genes and environment on major common diseases, such as cancer, diabetes, vascular disease, and coronary disease Virtual Lab: Demonstration of Extraction of DNA from Animal Sample								C01
2	Infectious Dis and History or Diagnostics	eases f	Types of infectious diseases- bacterial, viral, fungal, protozoan, and other parasites. Infection mode of transmission in infections, factors predisposing to microbial pathogenicity. Diagnosis of infectious diseases caused by bacteria, fungi, viruses, protozoa, and helminths. Virtual Lab: Demonstration of Gram staining to identify bacteria								CO2
3	Major Genetic disorders, its & Diagnosis.	c causes	Genetic disorders: Sickle cell anaemia, Duchenne muscular Dystrophy, Retinoblastoma, Cystic Fibrosis, and Sex – linked inherited disorders Case Study: A case study on any one of the genetic diseases. (Sickle cell anaemia, Duchene muscular Dystrophy, Retinoblastoma, Cystic Fibrosis or Sex – linked inherited disorders)								CO3
4	Cancer Biolog Diagnostics	y and A	Different types of cancers, genetics of cancer- oncogenes, tumour suppressor genes, Applications of Molecular Diagnostics for Human Cancers. Case Study: A case study on any type of cancer							8	CO4
5	Molecular Diagnostics To	E	RT- PCR, Anim Extraction, Real /irtual Lab: Der	time PCR, F	luorescence	In Situ Hybrid	dization.	echniques of	Nucleic acio	7	CO5
Referen	ice Books:										
"Murray	y's Medical Micr	obiology" l	by Patrick R. M	urray, Ken S.	. Rosenthal, N	Michael A. Pf	aller				
	al Microbiology"					R. Barer, Wi	ll L. Irving				
	mmunology" by	-									
"Basic In	mmunology: Fur	nctions and	d Disorders of t	he Immune S	System" by A	bul K. Abbas	, Andrew H.	Lichtman			
e-Lear	rning Source:										
Vlab.ar	mrita.edu; <u>https://</u>	/www.cours							preview		
Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSC CO	D PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
C01	3	1					2	3	2	2	1
CO2	3	1					2	2	2	2	1
CO3	3	1	2				1	3	1	3	_

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

CO4

CO5

Name & Sign of Program Coordinator	Sign & Seal of HOD

Effective from Session: 2023-24									
Course Code	B100303T/ BS208	Title of the Course	Basics of Microbiology	L	т	Р	с		
Year	П	Semester	111	4	2	0	4		
Pre-Requisite	10+2	Co-requisite							
Course Objectives	The objective	The objective of this course is to develop an understanding of basics of microbiology and sterilization techniques							

	Course Outcomes						
CO1	Students will be able to classify and analyze the basics and history of microbiology and general classification of microbes and extremophiles						
CO2	Students will be able to classify and evaluate the microbes in extreme environments and microbial interactions						
CO3	Students will be able to critically analyze the control of Microorganisms and staining techniques						
CO4	Students will be able to critically evaluate the basic details of growth of microbes and recombination in Prokaryotes						
CO5	Students will be able to compare and evaluate the details of bacteriophages						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	History of microbiology	Definition and scope of microbiology, Importance of microbiology in various fields, History of microbiology: Spontaneous generation and its controversy, Louis Pasteur and the refutation of spontaneous generation, Germ theory of disease, Robert Koch and the postulates of bacterial pathogenesis		CO1
2	Classification of microbes	Introduction to Microbial Classification, Prokaryotic, and eukaryotic microbes, Classification Methods and Techniques: Phenotypic, genotypic and serological methods, Microbial Taxonomy and Nomenclature; Nature of the microbial cell surface, gram positive and gram negative bacteria		CO1
3	Microbes in extreme environments and microbial interactions	Microbes in extreme environments and microbial interactions: The thermophiles: alkalophiles, acidophiles and symbiosis and antibiosis among microbial population, N_2 fixing microbes in agriculture and forestry.	8	CO2
4	Control of Microorganisms	rol of Control of Microorganisms: Physical agents (Autoclave, Hot air oven, Laminar airflow and membrane filter), chemical agents (Alcohol, Halogens and Gaseous agents, antibiotics), Badiation Methods (UV		CO3
5	Stains and staining techniques	Introduction to Stains and Staining Techniques, Principles of staining, Types of stains – simple stains, structural stains, and Differential stains, Application of Staining Techniques in Microbial Diagnostics	6	CO3
6	Recombination in Prokaryotes	Recombination in Prokaryotes: Transformation, Conjugation and Transduction	8	CO4
7	Growth of microbes	Introduction to Microbial Growth, Microbial Growth Curve, Factors Influencing Microbial Growth	6	CO4
8	Viruses/Bacteriophage	Introduction to Bacteriophages, Bacteriophage Structure and genetics, Bacteriophage Life Cycle: Lytic and lysogenic cycle, General characteristics of plant and animal viruses	8	CO5
Reference	ce Books:			
1. Introd	uction to Microbiology, Ing	raham, 2ed.		
	Biology of Microorganisms			
	81,	r, J.L. Ingraham, M.L.Wheelis and P.R. Painter, Macmillian		
	U ,	zar, E.C.S. Chan and N.R. Kreig, Tata McGraw Hill		
	licrobial World, Roger Y. Sta	Atlas, Wm C. Brown Publisher.		
		I manipulation, Cambridge University Press, USA		
	, B., Gene VI New York, Oxf			
	· ·			
	ning Source:			
https:/	//www.khanacademy.org/			

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO											
CO1	3	1					1	3		1	2
CO2	3	1					1	3		2	2
CO3	3	1					1	3		3	2
CO4	3	1					1	3		3	2
CO5	3	1					1	3		3	2
	1- Low Correlation: 2- Moderate Correlation: 3- Substantial Correlation										

Name & Sign of Program Coordinator	Sign & Seal of HOD

Effective from Se	Effective from Session: 2023-24									
Course Code	B190302P/BS209	Title of the Course	Molecular Biology Lab	L	Т	Р	С			
Year	П	Semester	III	0	0	4	2			
Pre-Requisite	10+2	Co-requisite								
Course Objectives	The course is design	The course is designed to train the students in basic and some advanced techniques of Molecular biology.								

	Course Outcomes							
CO1	The students will be able to formulate genomic DNA isolation strategies from bacteria.							
CO2	The students will be able to plan experiments for genomic DNA extraction from plant or animal tissues.							
CO3	The students will be able to design studies for isolation of plasmid DNA (<i>E. coll</i>).							
CO4	The students will be able to evaluate the process of restriction digestion of DNA.							
CO5	The students will be able to perform experiments to analyze the size of DNA using Agarose Gel Electrophoresis.							

Unit No.	Title of the Unit	Content of Unit	Contac t Hrs.	Mapped CO
1	Exp-01	Isolation of genomic DNA from bacteria (<i>E. coli</i>)	4	C01
2	Exp-02	Isolation of genomic DNA from plant tissue	6	CO2
3	Exp-03	Isolation of genomic DNA from animal tissue	6	CO2
4	Exp-04	Isolation of plasmid DNA (<i>E. coll</i>)	4	CO3
5	Exp-05	Restriction digestion of DNA	2	CO4
6	Exp-06	Agarose Gel Electrophoresis	2	CO5

Reference Books:

1. Gene Cloning and DNA Analysis: An Introduction, 6th Edition by T. A. Brown

2. Sambrook J, Russell D (2001) Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

e-Learning Source:

https://vlab.amrita.edu/

PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
C01	3	1					2	3		3	
CO2	3						2	3	2	3	
CO3	3	1					1	1		3	
CO4	3						1				3
CO5	3	1					1				3

Effective from Session: 2023-24										
Course Code	B100304P/ BS210	Title of the Course	Microbiology Lab	L	т	Р	с			
Year	Π	Semester	=	0	0	4	2			
Pre-Requisite	10+2	Co-requisite								
Course Objectives	microbes, Stai sterilization of	The objective of this course is to develop the understanding of basic microbiology, Instruments used to study and work on microbes, Staining Techniques, Enzyme assay and Biochemical tests–starch hydrolysis, gelatin liquefaction, Cleaning and sterilization of glassware, Media preparation and Isolation of bacteria and fungi from various sources, Growth curve of bacteria, Isolation and purification and estimation of DNA and RNA								

	Course Outcomes						
CO1	Students will be able to develop critical understanding of Instruments: Compound microscope, Autoclave, Hot air oven, pH meter,						
	Laminar airflow and centrifuge.						
CO2	Students will be able to critically analyze and understand the staining techniques						
CO3	Students will be able to perform the processes involved in culturing of microbes as cleaning and sterilization of glassware, media						
	preparation.						
CO4	Students will be able to perform design the process of isolation of bacteria and fungi from soil/ air/water/ other sources						
CO5	Students will be able to critically analyze the growth pattern of bacteria.						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Exp 1	Study of instruments: Compound microscope, Autoclave, Hot air oven, pH meter, Laminar airflow and centrifuge	nar 8 CO1					
2	Exp 2	Cleaning and sterilization of glassware	4	CO3				
3	Exp 3	Media preparation: Nutrients agar, Nutrient broth and LB.	4	CO3				
4	Exp 4	Isolation of bacteria and fungi from soil/ air/water – dilution and pour plate methods	8	CO4				
5	Exp 5	Staining Techniques: Gram staining for gram positive and gram-negative bacteria	8	CO2				
6	Exp 6	Growth curve of bacteria	8	CO5				
Referen	ce Books:							
Keith V	Vilson John Walker Johr	n M. Walker "Principles and Techniques of Practical Biochemistry"						
Willian	n M., Ph.D. O'Leary Rob	ert Dony Wu "Practical Handbook of Microbiology"						
Joseph	Joseph Sambrook David W. Russel Joe Sambrook "Molecular Cloning: A Laboratory Manual"							
e-Lear	ning Source:							

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
СО	101	102	105	104	105	100	107	1301	1302	1303	1304
CO1	3	1				3	1	3	2	3	
CO2	3	1				3	1	1	3	3	
CO3	3	1				3	1		3	3	3
CO4	3	1				3	1		3	3	3
CO5	3	1				2	1		3	1	2

Name & Sign of Program Coordinator	Sign & Seal of HOD

Effective	Effective from Session: 2022-23							
Course Code		B100401T/ BS218	Title of the Course	Industrial Biotech and Bioprocess Technology	L	т	Р	с
Year		П	Semester	IV	4	2	0	4
Pre-Requisite		10+2 Biology	Co-requisite					
Course	Objectives		tion of the course, a stu y, IPR and bioethics.	dent will be able to develop the understanding of industria	l aspeo	cts of		
Course	Outcomes: After this	course student	s will be able to					
CO1	The student will abl	e to analyze pr	ocesses involved in isol	ation of microorganisms and their strain improvement.				
CO2	The student will abl	e to formulate	media and type of ferm	nentation for the growth of microorganisms in industrial pro	ocesse	s.		
CO3	The student will dev	velop understa	nding about the design	and types of fermenters and operation of fermenters.				
CO4	The student will able to design industrial production process of alcohols, antibiotic and enzymes and other biologically active compounds by				by			
	industrial microbiological fermentation.							
CO5	The student will dev	The student will develop understanding about the policies of IPR and entrepreneurship and regulation of bioethics.						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction	Introduction of Industrial microbiology and Bioprocess technology. History-Introduction, scope and relation with other sciences. Screening for new metabolites: primary and secondary products. Maintenance of strains. Strain development through selection, mutations and recombination, and other recent methods	8	CO1
2	Fermentation technology	Fermentation media, Natural and synthetic media, Sterilization techniques: Heat, Radiation and Filtration method. Types of fermentation: solid state, submerged fermentation and continuous fermentation, Types of microbial culture and its growth kinetics– Batch, Fed batch and Continuous culture.	8	CO2
3	Bioprocess technology	Design and working of a typical bioreactor, Process of Aeration, Agitation, and Temperature regulation, Immobilized enzymes and cell bioreactors. Downstream processing (DSP), Disintegration of cells, Separation, Extraction, Concentration and purification of products.	8	СОЗ
4	Production of alcohols, antibiotic and enzymes:	Brief account of the following products obtained by industrial microbiological fermentation: alcohols (Ethanol) and Alcoholic Beverage: Beer, Organic acid: (citric and acetic). Amino acids: Glutamic acid, Vitamin: vitamin B12.	8	CO4
5	Production of biologically active compounds:	Production of antibiotics (penicillin) and enzymes (amylase, protease). Production of microbial food and single cell proteins.	8	CO4
6	IPR	Introduction to Intellectual Property Rights (IPR)-World Intellectual properties, Indian Intellectual Properties. Patents, Copyrights, Designs, Trademarks, Geographical Indication. Infringement of IPR, Its protection and Remedies. Licensing and its types.	7	CO5
7	Issues related to IPR	Issues related to IPR protection of software and database; IPR protection of life forms; patenting biological products and biodiversity; Major changes in Indian patent system as post TRIPS effects.	6	CO5
8	Bioethics and GMP	Introduction, necessity and limitation; Different paradigms of bioethics: National and International; Ethical conflicts in Biotechnology; Bioethics of genes, Legal implications in bioethics. Introduction to GMP.	7	CO5

Reference Books:

1. Glazier AN and Nikaido H (2007). Microbial Biotechnology – Fundamental & Applied Microbiology – Second Edition. Cambridge University Press. 2. Casida LE (2019) Industrial Microbiology. Second Edition, New Age International Publisher.

3. Stanbury P F and Whitaker, A. (2010). Principles of Fermentation Technology. Oxford: Pergamon Press

4. Shuler M L and Kargi F. (2002). Bioprocess Engineering: Basic Concepts. Upper Saddle River, NJ: Prentice Hall.

5. Crueger W and Crueger A (2002) Cruegers Biotechnology: A Textbook of Industrial Microbiology. Third Edition, Panima Publishing Corp., New Delhi.

6. Blanch H W and Clark D S. (1997). Biochemical Engineering. New York: M.Dekker.

7. Bailey J E and Ollis D F. (1986). Biochemical Engineering Fundamentals. New York: McGraw-Hill.

8. Richard HB, Julian ED, Arnold LD. (2010) Manual of Industrial Microbiology and Biotechnology, 3rd Edition

e-Learning Source:

https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-34-waste-containmentand-remediation-technology-spring-2004/lecture-notes/ https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-018j-ecology-i-theearth-system-fall-2009/

https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-018j-ecology-i-theearth-system-fall-2009/lecture-

notes/MIT1 018JF09 Lec07.pdf

https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-89-environmentalmicrobiology-fall-2004/

https://ocw.mit.edu/high-school/biology/exam-prep/cellular-energetics/fermentationcellular-respiration/fermentation/

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
СО	P01	PUZ	PU5	P04	P05	P00	P07	P301	P302	P305	P304
CO1	3	1				1	1	3	3	3	3
CO2	3	1				1	1	3	3	2	3
CO3	3	1				1	1	3	3	3	3
CO4	3	1				1	1	3	3	3	3
CO5	3	1	1		3	3	1	3	3	3	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2023-24	iffective from Session: 2023-24								
Course Code	B100403T/B S256	Title of the Course	Infection and immunity	L	т	Р	с		
Year	ll year	Semester	IV Sem	4	2	0	4		
Pre-Requisite	10+2	Co-requisite							
Course Objectives	ctives The objective of this course is to develop an understanding of the basics of infection and immunity								

	Course Outcomes
CO1	The students will be able to analyze and compare the characteristics of various infectious diseases and examine their modes of transmission.
CO2	The students will be able to evaluate and compare various laboratory diagnostic methods for identifying infectious agents
CO3	The students will be able to analyze and compare the structures and functions of antigens, examine the organization of the immune system.
CO4	The students will be able to analyze and compare the structures and functions of MHC molecules and examine the mechanisms of complement activation.
CO5	The students will be able to evaluate and critique various immunological techniques, assess immune response mechanisms, and justify vaccination
	strategies.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	History and transmission of infectious diseases	Definition and Historical perspectives of infectious diseases, Modes of Transmission and Pathogenesis of Infectious Diseases: Adherence and invasion mechanisms, toxigenesis and virulence factors, Host- pathogen interactions	8	C01
2	Laboratory Diagnosis of Infectious Agents	Laboratory Diagnosis of Infectious Agents: Sample collection and handling, microscopic examination and staining techniques, Culture, biochemical tests, and serological assays; Infection Control Measures: Standard precautions and isolation techniques, Sterilization, disinfection, and decontamination, Surveillance and outbreak investigation	8	CO2
3	Immune system organization	History of Immune system, Types of immunity Humoral & Cell Mediated. The cells and organs of the immune system. Innate immunity. Anatomical barriers, cell types of innate immunity, connection between innate and adaptive immunity	8	CO3
4	Types of Immunity and antigenic determinants	Adaptive immunity: Antigens and haptens. Structure and distribution of classes and substances of immunoglobulins (Ig), Ig fold, effector functions of antibody, antigenic determinants on Ig and Ig super family. Generation of antibody diversity	8	CO3
5	Structure and functions of MHC molecules	Structure and functions of MHC molecules (MHC I and II), Endogenous and exogenous pathways of antigen processing and presentation	6	CO4
6	Complement and its activation	Complement and its activation by classical, alternate and lectin pathway; biological consequences of complement activation; regulation of complement activity	6	CO4
7	Immunological techniques	Immunological methods-Antigen-antibody interactions. Agglutination, hemagglutination. Precipitin reactions in solution and in gels; immunoassays. Selection, Antigen presentation, Activation of T and B cells. Cytokines	8	CO5
8	Immune response and Vaccination	Immunological tolerance-Primary and secondary. Hypersensitivity and its types. Immune response against major classes of pathogens. Vaccines: Live attenuated, Inactivated, Toxoid, subunit/conjugate vaccine. Monoclonal Antibody	8	CO5
Referenc	e Books:			
"Murray'	s Medical Microbiology" by	/ Patrick R. Murray, Ken S. Rosenthal, Michael A. Pfaller		
	8, i	reenwood, Richard C. B. Slack, Michael R. Barer, Will L. Irving		
	3 1 1 1	Jenni Punt, Sharon Stranford		
Basic Im	imunology: Functions and I	Disorders of the Immune System" by Abul K. Abbas, Andrew H. Lichtman		
e-Learr	ning Source:			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3						1	3			
CO2	3				1		3	2		2	1
CO3	3						1	3			
CO4	3						1	2			
CO5	3				1		3	3		2	1
			1- Low	Correlation; 2	2- Moderate Co	rrelation; 3- Su	bstantial Correla	ition			

Name & Sign of Program Coordinator	Sign & Seal of HoD	
	ů.	

Course Code	B100402P/ BS219	Immunological Techniques Lab	Industrial Biotechnology Lab	L	т	Р	с	
Year	П	Semester	IV	0	0	4	2	
Pre-Requisite	10+2 Biology	Co-requisite						
Course Objectives	The objective	objective of this course is to enable students learn about basics of industrial biotechnology and fermentation						

	Course Outcomes						
CO1	Understand method of isolation of industrially important microorganisms.						
CO2	Perform Algal or fungal culture						
CO3	Perform estimation of citric acid from Aspergillus culture.						
CO4	Perform estimation of lactic acid.						
CO5	Understand the working of small scale fermenter						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Exp. 1	Isolation of industrially important microorganisms from soil.	8	CO1					
2	Exp. 2	Algal or fungal culture (Yeast and Aspergillus)	8	CO2					
3	Exp. 3	Estimation of citric acid from Aspergillus culture.	8	CO3					
4	Exp. 4	Estimation of lactic acid.	8	CO4					
5	Exp. 5	Demo of working of small scale fermenter	8	CO5					
Refere	nce Books:								
1. Glazie	er AN and Nikaido H (2007).Mi	crobial Biotechnology – Fundamental & Applied Microbiology – Second Edition. Cambridge University	Press.						
2. Casida	a LE (2019) Industrial Microbio	logy. Second Edition, New Age International Publisher.							
3. Stanb	oury P F and Whitaker, A. (201	0). Principles of Fermentation Technology. Oxford: Pergamon Press							
4. Crueg	er W and Crueger A (2002) Cru	ueger's Biotechnology: A Textbook of Industrial Microbiology. Third Edition, Panima Publishing Corp.,	New Delhi.						
5. Blan	5. Blanch H W and Clark D S. (1997). Biochemical Engineering. New York: M. Dekker.								
e-Lea	e-Learning Source:								
https:,	https://onlinecourses.nptel.ac.in/								

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
СО	PUI	POZ	P05	P04	P05	PUO	P07	P301	P302	F303	P304
CO1	3	1		3			3	3	2		3
CO2	3	1		3			3	3	2		3
CO3	3	1		3			3	3	2		3
CO4	3	1					3	3	2		3
CO5	3	1					3	3	2		3

Name & Sign of Program Coordinator	Sign & Seal of HOD

Effective from Session: 2023-24											
Course Code	B100404P/	Immunological	Immunological Techniques Lab	L	т	Р	с				
	BS258	Techniques Lab			-	-	-				
Year	П	Semester	IV		0	4	2				
Pre-Reguisite	10+2	Co-requisite									
PTe-Requisite	Biology	co-requisite									
Course Objectives	The objective of this course is to enable students learn about basics of immunology, types of Blood grouping, cell counts,										
course objectives	ELISA, Ouchte	erlony Double diffusion	(ODD) and Separation of serum from blood & precipitation	of Imr	nunoglo	bulin	S				

	Course Outcomes								
CO1	Student will be able to Critically Evaluate the blood groups and the variations in differential WBC counts.								
CO2	Student will be able to Evaluate the effects of detergents and concentrations on RBC membrane.								
CO3	Student will be able to Evaluate the applications of ELISA and Dot ELISA, interpreting the relevance of these assays.								
CO4	Student will be able to Analyze the antigen-antibody interaction pattern by Ouchterlony Double diffusion assay.								
CO5	Student will be able to Analyze the separation of serum from blood & precipitation of Immunoglobulin.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Exp. 1	Blood grouping	6	CO1
2	Exp. 2	Differential Count of WBC	6	CO1
3	Exp. 3	Detergent lysis of RBC	6	CO2
4	Exp. 4	Dot Elisa	6	CO3
5	Exp. 5	ELISA – Demonstration	6	CO3
6	Exp. 6	Ouchterlony Double diffusion (ODD)	6	CO4
7	Exp. 7	Separation of serum from blood & precipitation of Immunoglobulins	6	CO5
Referen	nce Books:	·		•

1. Asim Roy Kumar, 2. Talwar Gupta A Handbook of Practical & Clinical Immunology 3. A.K. Abbas and A.H. Lichtman, Saunders, Basic Immunology, W.B. Company

e-Learning Source:

https://onlinecourses.nptel.ac.in/

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
СО	PUI	P02	P05	P04	P05	PUO	P07	P301	P302	P305	P304
CO1	3	1					3	3	2		
CO2	3	1					3	3	2		
CO3	3	1					2	3	2		
CO4	3	1					1	3	2		
CO5	3	1					1	3	2		

Name & Sign of Program Coordinator	Sign & Seal of HOD

Effective from Session: 2023-24										
Course Code	B110405V/ BS259	Title of the Course	Molecular Medicine	L	т	Ρ	с			
Year	П	Semester	IV	3	0	0	3			
Pre-Requisite	10+2	Co-requisite								
Course Objectives	The objective of this course is to develop an understanding of principle and application of the molecular medicine.									

	Course Outcomes								
CO1	To evaluate the design, workflow, and contamination prevention strategies for setting up a molecular medicine laboratory, including sample handling and preparation protocols.								
CO2	To critically analyze the conformational dynamics of biomolecules and diseases caused by protein misfolding.								
CO3	To assess the principles and methodologies used in studying tissue and cell structures and propose advanced preparative techniques for light and electron microscopy visualization.								
CO4	To design experimental protocols by integrating principles and technical aspects of animal cell culture for research applications.								
CO5	To critically evaluate the principles and applications of molecular techniques used in disease diagnostics, propose their role in clinical research advancements.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Molecular Medicine Lab	Molecular Laboratory Set up: Introduction, Design, Requirements, Laboratory, Good Clinical Laboratory Practice (GCLP), buffer preparation, micro-pipetting, Measurement of pH of solutions, molarity, normality and molality calculation and graph plot, sample collection, handling and storage etc. used in laboratory.	8	C01
2	Biomolecule Conformations & related disorders	Conformation of Biomolecules: Nucleic acids: A-, B-, Z-DNA forms. Ramachandran plot, Secondary, Tertiary and Quaternary structure, Domains, Motif and Folds. Protein misfolding: diseases and diagnosis	8	CO2
3	Cell Imaging and Interpretation	Contrast and dark field microscopy. Preparation of cells and fissues for light and electron L		CO3
4	Animal Cell Culture	Description and maintenance of animal cell culture, aseptic technique, cloning and selection of specific cell types, contamination, methods for measuring viability and cytotoxicity, cell culture environment (substrate, gas phase, medium) and the culturing of specific cell types	8	CO4
5	Molecular Diagnostics Techniques	Role of PCR & its variants in diseases diagnosis, Nucleic acid Extraction Protocol (DNA & RNA), Polymorphism based disease diagnostics techniques such as RFLP and RAPD.	6	CO5
Referen	nce Books:			
" Berg, J	.M., Tymoczko, J.L. and Stry	er, L. (2010). Biochemistry. W.H. Freeman & Company. USA.		
"Medica	I Microbiology" by David Gr	eenwood, Richard C. B. Slack, Michael R. Barer, Will L. Irving		
"Kuby In	nmunology" by Judy Owen,	Jenni Punt, Sharon Stranford		
"Basic In	nmunology: Functions and I	Disorders of the Immune System" by Abul K. Abbas, Andrew H. Lichtman		

e-Learning Source:

https://www.khanacademy.org/test-prep/mcat/biomolecules

Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	
3	1	1		2	1	1	3	2	1	3	
3	1					1	2		2	3	
3	1					2	3	2	3	2	
3	1					1	2	1	3	2	
3	1					2	3	2	3	2	
	3 3 3	3 1 3 1 3 1 3 1 3 1	3 1 1 3 1 3 1 3 1 3 1 3 1	3 1 1 3 1 - 3 1 - 3 1 - 3 1 - 3 1 -	PO1 PO2 PO3 PO4 PO5 3 1 1 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2	P01 P02 P03 P04 P05 P06 3 1 1 2 1 3 1 - 2 1 3 1 - - - 3 1 - - - 3 1 - - - 3 1 - - -	P01 P02 P03 P04 P05 P06 P07 3 1 1 2 1 1 3 1 2 1 1 3 1 2 1 1 3 1 2 1 1 3 1 2 1 1 3 1 2 1 1 3 1 2 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PS01 3 1 1 2 1 1 3 3 1 1 2 1 1 3 3 1 1 2 1 1 3 3 1 1 2 3 1 2 3 1 1 1 2 3 3 3 1 1 1 1 2 3 3 1 1 1 1 2 3 3 1 1 1 1 2 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PS01 PS02 3 1 1 2 1 1 3 2 3 1 1 2 1 1 3 2 3 1 2 1 1 3 2 3 1 2 1 1 2 1 3 1 2 1 1 2 3 2 3 1 2 1 1 2 3 2 3 1 2 1 2 3 2 3 1 2 1 1 2 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PS01 PS02 PS03 3 1 1 2 1 1 3 2 1 3 1 1 2 1 1 3 2 1 3 1 1 2 1 1 3 2 1 3 1 1 1 2 1 2 2 3 3 1 1 1 1 2 3	

